Publications
(* indicates equal contribution)
Peer-reviewed
Frauen, D., Hess, K. & Feuerriegel, S. (2025). Model-agnostic meta-learners for estimating heterogeneous treatment effects over time. In ICLR 2025. arXiv
Wang, Y., Schröder, M., Frauen, D., Schweisthal, J., Hess, K. & Feuerriegel, S. (2025). Constructing Confidence Intervals for Average Treatment Effects from Multiple Datasets. In ICLR 2025. arXiv
Feuerriegel, S., Frauen, D., Melnychuk, M., Schweisthal, J., Hess, K., Curth, A., Bauer, S., Kilbertus, N., Kohane, I.S. & van der Schaar, M. (2024). Causal Machine Learning for Predicting Treatment Outcomes. Nature Medicine. PDF
Schweisthal, J.*, Frauen, D.*, van der Schaar, M. & Feuerriegel, S. (2024). Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments. In ICML 2024. PDF arXiv
Frauen, D., Melnychuk, M., & Feuerriegel, S. (2024). Fair Off-Policy Learning from Observational Data. In ICML 2024. PDF arXiv
Kuzmanovic, M., Frauen, D., Hatt, T. & Feuerriegel, S. (2024). Causal Machine Learning for Cost-Effective Allocation of Development Aid. In KDD 2024. arXiv
Frauen, D., Imrie, F., Curth, A., Melnychuk, M., Feuerriegel, S. & van der Schaar, M. (2024). A Neural Framework for Generalized Causal Sensitivity Analysis. In ICLR 2024. arXiv
Hess, K., Melnychuk, M., Frauen, D. & Feuerriegel, S. (2024). Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation. In ICLR 2024. arXiv
Schröder, M., Frauen, D. & Feuerriegel, S. (2024). Causal Fairness under Unobserved Confounding: A Neural Sensitivity Framework. In ICLR 2024. PDF
Melnychuk, M., Frauen, D. & Feuerriegel, S. (2024). Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation. In ICLR 2024. PDF arXiv
Frauen, D., Melnychuk, M., & Feuerriegel, S. (2023). Sharp Bounds for Generalized Causal Sensitivity Analysis. In NeurIPS 2023. PDF arXiv
Melnychuk, M., Frauen, D. & Feuerriegel, S. (2023). Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity Model. In NeurIPS 2023. PDF arXiv
Schweisthal, J., Frauen, D., Melnychuk, M. & Feuerriegel, S. (2023). Reliable Off-Policy Learning for Dosage Combinations. In NeurIPS 2023. PDF arXiv
Melnychuk, M., Frauen, D. & Feuerriegel, S. (2023). Normalizing Flows for Interventional Density Estimation. In ICML 2023. PDF arXiv
Frauen, D. & Feuerriegel, S. (2023). Estimating Individual Treatment Effects under Unobserved Confounding using Binary Instruments. In ICLR 2023. PDF arXiv
Frauen, D., Melnychuk, M. & Feuerriegel, S. (2023). Estimating Average Causal Effects from Patient Trajectories. In AAAI 2023. PDF arXiv
Melnychuk, M., Frauen, D. & Feuerriegel, S. (2022). Causal Transformer for Estimating Counterfactual Outcomes. In ICML 2022. PDF arXiv
Preprints
Melnychuk, M., Frauen, D., Schweisthal, J. & Feuerriegel, S. (2025). Orthogonal Representation Learning for Estimating Causal Quantities. arXiv
Schweisthal, J., Frauen, D., Schröder, M., Hess, K., Kilbertus, N. & Feuerriegel, S. 2024. Learning Representations of Instruments for Partial Identification of Treatment Effects. arXiv
Schröder, M., Frauen, D., Schweisthal, J., Hess, K., Melnychuk, M. & Feuerriegel, S. (2024). Conformal Prediction for Causal Effects of Continuous Treatments. arXiv
Hess, K., Frauen, D., Melnychuk, M. & Feuerriegel, S. (2024). G-Transformer for Conditional Average Potential Outcome Estimation over Time. arXiv
Ma, Y., Frauen, D., Melnychuk, M. & Feuerriegel, S. (2024). Counterfactual Fairness for Predictions using Generative Adversarial Networks. arXiv